108 research outputs found

    Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection

    Get PDF
    This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience

    Depth image based rendering with inverse mapping

    Get PDF

    Objective quality metric for 3D virtual views

    Get PDF
    In free-viewpoint television (FTV) framework, due to hard-ware and bandwidth constraints, only a limited number of viewpoints are generally captured, coded and transmitted; therefore, a large number of views needs to be synthesized at the receiver to grant a really immersive 3D experience. It is thus evident that the estimation of the quality of the synthesized views is of paramount importance. Moreover, quality assessment of the synthesized view is very challeng-ing since the corresponding original views are generally not available either on the encoder (not captured) or the decoder side (not transmitted). To tackle the mentioned issues, this paper presents an algorithm to estimate the quality of the synthesized images in the absence of the corresponding ref-erence images. The algorithm is based upon the cyclopean eye theory. The statistical characteristics of an estimated cy-clopean image are compared with the synthesized image to measure its quality. The prediction accuracy and reliability of the proposed technique are tested on standard video dataset compressed with HEVC showing excellent correlation results with respect to state-of-the-art full reference image and video quality metrics. Index Terms — Quality assessment, depth image based rendering, view synthesis, FTV, HEVC 1
    • …
    corecore